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TECHNICAL MEMORANDUM

MODELING OF ROLLING ELEMENT BEARING MECHANICS--

COMPUTER PROGRAM UPDATES

INTRODUCTION

The Rolling Element Bearing Analysis System (REBANS) was developed for NASA's Marshall

Space Flight Center (MSFC) by Aerojet. The initial version (version 1.10), delivered in December 1994,

contained several errors and exhibited numerous convergence difficulties. The program has been

modified in house at MSFC to correct the errors and greatly improve the convergence (version 2.0).

The most significant changes are related to the improved convergence and will be described in the

Solution Methodology section and the Constraints and Solution Procedure section. The other changes,

corrections, and enhancements will be discussed in the Programming Implementation section.

THEORETICAL MANUAL UPDATES

The changes affecting convergence address areas discussed in sections 2.1, 7, and 8 of the original

Theoretical Manual. In this discussion, equations and figures in the original manual will be referenced

by the original numbers, preceded by an uppercase letter "A." The original nomenclature will be used, as

well. Many aspects of the original theory remain applicable after the changes; therefore, the reader

should be familiar with the initial theory before examining the updates.

The introductory material of section 7 (pages 7-1 through the beginning of 7-3) remains valid.

Likewise, sections 7.4 and 8.4 remain valid. The material which follows modifies the remainder of

sections 2.1, 7, and 8.

Solution Methodology (Section 2.1)

The program can operate in two modes. The primary mode is to accept user-specified shaft/inner

race displacements and calculate the resulting loads. The other mode is to accept forces and moments as

input and determine the corresponding shaft/inner race displacements. This mode is essentially the first

mode with an outer iteration loop around it.

For either of the solution modes described above, the fundamental problem to be solved is this:

given a position of the shaft/inner race, determine rolling element positions and loads and race elastic

deflections. The resulting rolling element loads are then summed to yield the net forces and moments

on the shaft. This fundamental problem is the area addressed by the changes.



Theoriginalapproachutilizedsequentialconvergenceof nestedloopsto achievefinal convergence.
Thisapproachprovedto be seriouslydeficientin robustness.Convergencewasmoretheexceptionthan
therule.Theapproachwaschangedto iterateall variablessimultaneously.Thishastheadvantageof
usingknowledgeof theeffectof eachvariableoneachothervariable(via thesystemJacobian)when
determiningtheincrementalchanges.Thestepsareasfollows:

. The outer ring is fixed at its current position (begins at initial guess). The inner race is at a

prescribed position. Using classical quasi-static analysis procedures, the rolling element positions
and loads are determined.

. Calculated loads are applied to the outer and inner races and elastic deflections calculated.

Nonlinear gap closures are identified and constraint forces determined. The constraint forces are

now modeled using artificial, stiff springs at closed gaps. The partial derivatives of rolling

element and constraint forces with respect to race elastic deflections are determined using finite

perturbations. These data are used to calculate incremental changes in race elastic deflections.

This process is repeated until convergence is attained.

. If the program is running in the force input mode, a series of inner race displacement

perturbations is made in order to calculate the partial derivatives of forces and moments with

respect to inner race displacements. These data are used to calculate increments in the inner race

displacements, and the process is repeated until convergence is achieved.

Constraints and Solution Procedure (Sections 7.1-7.3)

The original approach to defining constraint forces was to force gap deflections to identically equal

clearances at locations where contact occurs. For a given set of assumed closure locations, the contact

forces required to enforce the constraints can be calculated as described in section 7.3. The difficulty

with this approach is that the calculated constraints then change the race deflections and generate a new

set of closure locations. This requires an iterative solution for each stage of the larger iteration loop

involving rolling element forces. The current approach treats the contact forces using artificial stiff

springs.

The formulation begins using equation (A7-2) and augmenting it with the corresponding equation

for the inner race, yielding:

oUli 0 C0_2 Fbi

(1)



The subscripts and superscripts o and i have been added to refer to the outer and inner race, respectively.

The outer race rolling element force vector is a function of both the inner and outer race curvature center
deflections:

Fbo = Fbo (Ulo , Uli ) (2)

The inner race rolling element force vector is a function of both, as well:

Fbi = Fbi (Ulo, Uli ) (3)

The outer race constraint force vector is a function only of the deflections of potential contact points on
the outer race and carrier:

f-Kcontac t (U3rac e -U3carrier-clearance); for closed gaps
Fc Fc(U3)= [o ; for open gaps

(4)

where Kcontact is set to a value much larger than any actual stiffness in the system. In terms of the gap

variable defined in equation (A7-9) (equation (A7-14) for negative faces), equation (4) for closed gaps

becomes:

Fck = Kcontac t (U3(Ck)+ Gk -U3(O k)) = Kcontac t Ag (k) (5)

Equation (1) can be written more concisely as

u = CF (u) (6)

This implicit equation can be iteratively solved using Newton's method. Applying a first order

perturbation to equation (6) yields:

which can be rearranged to:

U o+6U=CF(U0)+C _Uo
5U

(7)

II C 0F ]

- _-Uu0J b'U=CF(U O)-U 0

(8)



Equation (8) now forms the basis for the iterative solution. Substituting the nth iterate for the

equilibrium value (subscript 0) results in:

I - C cgF ]u n bUn = CF(U n)- U n = R n (9)

where Rn is the residual vector which should ideally be zero when a solution is found. The Jacobian

(--_) and the residual must be evaluated at every iteration point. Once this is done, equation (9)can be

solved for SUn using standard linear algebra techniques. Convergence is achieved when the error norm,

defined by:

IIRnll (lo)
err n -]lUn[[

is less than a specified tolerance.

Equation (9) can be expanded to the notation of equation (1) yielding:

Ic% co_ o ]

i-Lc % c% o 10 C0_2

- O3Fbo OFbo -
0

c_Ulo auli

C)Fbi _Fbi
0

{5Ulo1

_Uli J n

Un.

c% c%
c% c%

0 0

o]
-_[_I

ILi n

(11)
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The solution estimates are updated as follows:

[ '1ol I<o/
:

tuiU3iln+l tu1U3iln LC_UliJn

(12)

The process is repeated until convergence is attained.

Examination of equation (11) reveals that there are two types of partial derivative evaluations

required. The first is the partial of inner and outer race rolling element forces with respect to inner and

outer race curvature center elastic deflections. These partials are determined by numerically perturbing

each curvature center variable independently and forming finite difference approximations to the partial

derivatives. The second is the partial of the constraint force with respect to deflections of the outer race

and carder gap variables. It can be seen from equation (5) that, for closed gaps, this partial is simply

Kcontac t with the appropriate sign based on whether the face is positive or negative and whether the

variable is on the race or the carrier. For open gaps, it must first be determined whether the gap

corresponds to an unloaded preload spring. This is correctly addressed in section 7.4. If the gap does not

correspond to an unloaded preload spring, the partial is zero. If it does, the partial is equal to Kprei

(equation (A7-21)) with the appropriate sign based on whether the face is positive or negative and

whether the variable is on the race or the carder.



Programming Implementation (Section 8)

This section will describe the program logic and subroutine hierarchy required to implement the

previously defined theory. In addition to the theoretical changes discussed, some additional functional

and minor theoretical changes have been made in the implementation:

. FEREBA will now write the reduced flexibility matrices to a disk file. This enables the user to

make subsequent analyses which use the same race model without having to recompute these
matrices.

. For the displacement input mode, multiple sets of inner ring displacements can be read from a

file. These will be solved sequentially. The initial guess for a new solution set will be the solution

values from the previous set. This facilitates the determination of load-deflection curves for a

bearing.

. The displacement input mode can be run with force iteration in the axial direction only. This

allows the user to specify a fixed axial load while determining the reactions to the lateral

displacements and rotations. This is also useful to determine the initial axial displacement needed

to yield a certain initial preload for the more typical displacement input mode. This feature is

primarily useful for simplex bearing arrangements.

4. FEREBA will calculate an average "rigid body" tilt for the outer ring based on weighted

averages of the elastic deflections of the finite element model node locations.

. Several additional output files are now generated for each run. For the multiple case

displacement input, the displacements and loads are written in a tabular format to an ASCII file

and to a binary file. These files facilitate interpretation and plotting of results. The outer ring

constraint forces are also written to a binary file. In addition, the capability has been added to

graphically display the outer race curvature center (ORCC) deflections as a distorted ring. The

values defining these curves are written to another binary file for plotting.

. For simplex bearing configurations, the user can specify a lateral stiffness between the race and

carrier at the preload spring contact face. This is used to represent the lateral load path which can

occur due to friction between the spring and the cartier and race axial faces.

. A set of external forces can be applied to the outer race independently of the preload and internal

reaction forces. One interesting use of this capability is to apply a moment to force the race to

cock or tilt within the deadband resulting in "corner-to-corner" deadband contact or gap closure.

This would be used to partially simulate a cocked and hung bearing. Since friction forces are not

included, the race would still be free to slide axially.

8. The original code required two radial master degrees-of-freedom (DOF's) on the outer diameter

of the outer race. This introduced a significant error due to the large spatial resolution in the axial
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direction.Thecodehasbeenchangedto requirethreeradialmasterDOF's on this surface. This

allows for "comer" nodes to properly carry tilt loads and a central node to account for "bridging"

of the race. The bearing support configuration descriptions in section 3.1 of the Theoretical

Manual have been applied updated for cases affected by this change (IBSCOR=2, 3, 5, 6, 8, 9).

These updates are included in the appendix.

9. With the new solution approach, an initial guess (call to subroutine INDEL) must be made for

the outer race deflections, even in the displacement input mode.

10. The constraint transformation matrices Ts defined in equation (A7-17) and Tfdefined in equation

(A7-20) provide notational convenience but are computationally inefficient. A more efficient

implementation has been applied that uses index arrays and indirect addressing of array

components to perform the same functions.

11. Duplex bearing analysis previously required an ANSYS model of the inner race-shaft in order to

determine initial offsets needed for a specified preload. A subroutine has been added (CIRIG)

that generates an inner race compliance matrix corresponding to two rigid rings connected by

"pseudorigid" (i.e., very stiff) springs. This allows duplex bearing analysis without requiring a

full finite element model of the inner race.

12. For duplex bearing analysis, there was previously a convergence error in the iterative calculation

of the preload induced contact angle (equation (A5-32)). This value is used in the calculation of

the preload-induced axial elastic displacement of the inner rings (equation (A5-35)). The

function, f((Xp), and its derivative,f ((Xp), contain a singularity at the value (Xp = 0_°. The original

approach used 0¢° as the initial guess for the iteration and, consequently, it never converged. The

initial guess was modified to 1.10_ ° to avoid this singularity. Starting at a value greater than a° is

appropriate since axial preload will always increase the angle from its unloaded value.

13. The rolling element orbital speed used in the centrifugal force calculation was based on the initial

estimate of rolling element positions from subroutine GUESS. The algorithm has been revised to

update the speeds based on the positions obtained from an initial solution by DNEQNF (same as

the original final solution). With the updated orbital speeds (and resulting centrifugal forces),

DNEQNF is called again to yield a revised solution. This process could theoretically be iterated

until convergence is achieved; however, the speed change was found to be insignificant after only

one update so no looping logic was coded.

The subroutine calling hierarchy is shown in figures la through lc. The subroutines listed in bold

type are newly created to implement the program changes. The subroutines listed in italic type are not

used by FEREBA but are included for anticipated future functionality. The logic flow is presented in the

flow chart of figures 2 and 3. Figure 2 is the overall program flow chart and figure 3 is the flow chart for

the UPDATE subroutine. The variable list of section 8.4 in the original manual remains valid.
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FEREBA

--ERSET IMSL routineto control responseto error conditions (normally commented out)
DBLSET sets doubleprecision arraysto a specifiedconstant(used in many routines)

mGETARG returnscommandline arguments(system specific routine)
READAF readsanalysisvariablesand bearing datafrom PREBANgeneratedinput file
DATOUT prints analysissummary--geometry, loads,fits, materials,temperatures

-- FDATE writes analysistime anddate to output file (systemspecific routine)
ROLDAT prints dataon rolling elementsspecific to ball or roller bearing

mCALCON calculatesgeneralconstants relevantto all bearingtypes
--TMPFIT calculateschangein clearancesdueto differentialtemperatureeffects
--BCON defines parametersspecific to ball bearings
• I-. ABDEL calculatesdimensions and elasticconstantsfor point contact

--CRCON defines parametersspecificto roller bearings

ABDEL calculatesdimensions and elasticconstantsfor line contact

SLICES calculatesslice constantsand crown drops for cylindrical roller bearings
SETGAP sets gapbetweenroller flangeand roller enddependingon flangetype "

--SPRING determinesapproximatespring compliancesfor axial, radial, andangular loads
--INDEL makesinitial guess on outerring elastic deflectionsand shaft/inner ring global displacements

-- SYSCON prints nonzeroarray elementsin the SYSTEMcommon block (used in many routines)
--FEMFLX readsfinite elementsubstructuresand convertsto reducedflexibility matrices

--READMT readspreviouslywritten reducedflexibility matrices (avoids rerunning FEMFLX)
_RD8ASC readsASCIIformat ANSYSsubstructurematrices, storingstiffness only
--TRANAF reordersDOF'sin stiffness matricesto FEREBAsystem
--MATPRT prints out matrices 12 columns per page(for diagnostics)
--ADDSTF adds preloadsprings and 'dummy' springs for deadband
--MATRED condensesDOFout of cylindrical stiffness matrices

I.- SHIFTS shifts rows and columns of stiffness matricesover removedDOF

--DLFTRG IMSL routine that computes LUfactorizationof a matrix
--DLFIRG IMSL routineto obtain solution to linear equationset
--WRITMT writes reduced flexibility matricesfor usewith subsequentreruns
--CODIM sets dimensionsof outer ring/carrierflexibility matrix
--COPART stores requiredpartitions of outer ring/carrierflexibility matrices
_CIDIM sets dimensionsof inner ring/shaft flexibility matrix
--CIPART stores required partitions of inner ring/shaft flexibility matrices
--CIRIG generatespseudorigid inner ring flexibility matrix for duplexcasewithout ANSYSmodel
-- ETIME elapsedtime counter (systemspecific routine, usedin many routines)

--QSTATE main driver of quasi-static equilibrium problem
--GAPDEF setsvaluesof deadbandgapsdependingon ring configurations
--PRELOD determinesaxialdisplacementof inner ring dueto axialpreload--used onlyfor duplexcase

I NRSOLV determinesaxial preloadcontact angle usinga Newton-Raphsoniteration
DEFLOP calculatesaverageelastic ORCCdeflectionsdueto axial preload

CNSTIF computes constraint transformation matrix (for gap closures)

_. MEMSET sets single precisionor integer arraysto a constantvalue (used in manyroutines)

DLINRG IMSL routine to invert constrainedflexibility matrix
DEFLIP calculatesaverage linearelastic IRCCdeflectionsdueto axial preload

continues

FIGURE 1a.--FEREBA subroutine calling tree.



from QSTATE

L.for all specifiedinner racedisplacements(multiple run feature)
- DOITRF= 1 NITRF (applied loaditeration loop)

- DOITR= 1, NITRD (elastic deflectioniteration loop)
- SLVBEQ directs solution of rolling elementloadand position equilibrium equations

--GUESS provides initial guessor updatesof rolling elementunknowns

E GBALLB sets ball positions (optional), rotationaland orbital speedsGROLLB sets roller positions (optional), rotationaland orbital speeds
GUESCG estimatescage-ringrelative motionand assignscageDOF's

--BRGFOR determines brg. loadsfor current shaftdisplacementsand ring elastic deflections
m DOIRE= 1, NRE(loop for each rolling element)

- PREPAR initializerolling element,cagevariables,and arrays
--BALLIN calculatescurvaturecenterdistances(ball bearing)
-- UNLODB determinesif ball is out of contact with inner race
-- ROLLIN transforms coordinatesfor roller/racewayinterferencecalculations

LFLNDEF calculatesroller/flange interference

-- UNLODR determinesif roller is out of contactwith inner race
LTPNORM calculatesloadsabout roller CG

-- MAXMIN sets max/minvaluesfor cageandrolling elementvariables

- DNEQNF IMSL routineto solve nonlinearequationswith numerical partials
I=. BEAF_EQsets up equilibrium equationsdependingon bearingtype

--BALLEQ defines ball bearingequilibrium equations

. MIX calculatesfrictional load components
BDRAG calculatesdragcoefficient

--ROLLIN ** follows samesubroutine hierarchyas previouscall
ROLLEQ definesroller bearingequilibrium equations

TPNORM calculatesloadsabout roller CG
FLNORM determinesflange loads
FMIXR calculatesfrictional loadcomponents
FLMIX calculatesflangefrictional loads

-- BRGAX calculatesm/lingelementaccelerationterms
-- CAGEEQdefines cage-elementinteraction

-6UESSl provides initial guessor updatesof unknownsfor single rolling element

.- 6BALL1 sets positions (optional), rotationaland orbital speedsfor single ball
6ROLL1 sets positions (optional), rotationaland orbital speedsfor single roller

- DNEQNF IMSL routine to solve nonlinearequationswith numerical partials
** follows samesubroutinehierarchyas previous call

=end loop oneach rolling element

-- CALFOR forms outer raceloadvector from rolling elementforces and angles/moments
-- SUMFIR sums forces and momentsacting on inner ring

mGUESS ** follows same subroutine hierarchyas previouscall (called for update)
A B C

FIGURE lb.--FEREBA subroutine calling tree (continued).
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A--Continue--"for all specified inner race displacements" loop

B--Continue--"DO ITRF= 1, NITRF" loop

C--Continue--"DO ITR= 1, NITRD" loop

UPDATE increments race deflection variables for next iteration

| _CNSTIF computes constraint transformation matrix (for gap closures)

| _-LFTOFF modifies constraint forces to null tension in preload springs

IF FUUSUB calculates partials of rolling element forces with respect to curvature centerdeflections
Lfor all race DOF's

I// ,-oo-,,:: follows samesubroutine hierarchyas previous call (called for initial guess)

I/ / It" PREPAR ** follows same subroutine hierarchy as previous call
|| | _ DNEQNF follows same subroutine hierarchy as previous call

I/ / It" GUESS1 _ follows same subroutine hierarchyas previous call (called for update)
|| | It- DNEQNF follows same subroutine hierarchy as previous call

I/ L "-'- PERFOR forms race load vectors from rolling element forces and angles/moments

_- c deflectniterationtolerancecheck"elastiDLSARGio/MsLrOutinetosOIvefOrracedeflection increments (equation 10)

-DO IDOF= 1, NDOF (perturbations to form Jacobian for applied load iteration loop)

I DOITR= 1, NITRD (elastic deflection iteration loop)

_,-SLVBEO. ** follows same subroutine hierarchy as previous call

_,-UPDATE ** follows same subroutine hierarchy as previous call

"-elastic deflection iteration tolerance check

Jacobian formed for applied load iteration loop

-DLSARG IMSL routine to solve for inner ring displacement increments in applied load loop
-applied load iteration tolerance check

LIFE calculates bearing fatigue life
I,-- FLMFAC lubrication film factor for life adjustment

writes solution data to files

m RELOUT writes rolling element output

-,-,SETUP routine to setup piecewisecubic interpolation of ORCCdeflections for graphing
TRPLAT piecewise cubic interpolation routine

REFLOT writes output for roller bearing flanges

elapsedtime counter (system specific routine, used in many routines)
finish reading user specified inner racedisplacements (multiple run feature)

FIGURE lc.--FEREBA subroutine calling tree (continued).
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READAF
Read/EchoData OATOUT

Constants
andCalculatentaDeflections ICALCON

ReadRaceStiffness
Matrices; Reduce FEMFLX

and Invert; Partition

IS°'veQuas'-Stat'cIosrArEEquiIibr,um
I

!
!
I
!
!

I DefinegeadbandIsA"DE#Gap

{
I Calculate Duplex PREL00Preload Offset i

ID

I Loads and Ring

Deflecti°n S°luti°n l'i- - - -_t i..._.{_Do

No , I

I Loads and Ring IDeflection Solution

I FormDiscreteIPartial Derivs.

--( n°,oo Looo)
1

I Update ShaftDisplacements I

OLSAne_ I

LI
i No

End ITRF Loop

I CalculateLife, LIFEOutputResults OUTRSP

End '_

ITR=I,NITR )
,YLVBEO

EstimateRolling
Element Positions

and Speeds

I InitializeVariables, IPREpA/tCheckfor Unloading

I Solvefor Rolling
Element Positions

and Forces

I Update RollingElementSpeeds

Re-solvefor Rolling
Element Positions

and Forces

0NEONF

GUESSl

ONEONF

Form RaceLoad
Vector

Sum Forceson
Inner Race

OALFOR

ISUMFIR

I Update Rolling IGUE88ElementSpeeds

I Update Race IupoArEDeflections

FIGURE 2.1FEREBA flow chart.
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I Form Constraint

ForceTransformation
Matrix

CNSTIF

Calculate Relative

GapDeflections and
Identify ClosedGaps

CalculateConstraint

Forcesand Transform
to GapDOFVector

(Equation 5)

Update Constraint
Forcesfor Unloaded

Preload Spring Segments

Define Partials of
Constraint Forces

w.r.t. GapDeflections

I Calculate Residual
Vector and

Normalized Error

+
CalculatePartials of

Ball Forces w.r.t.
Curvature Center

Deflections

Form Jacobian;
Solve for Race

Deflection Increments

(Equation 10)

incre  n  aceIDeflections

(Equation 11)

LFTOFF

Return

OLSARG

I
I
I

i...

T

-I_[_o IRDOF=I,NRDO_]

CenterDOF# IRDOF

Element Positions GUESS1
and Speeds

I Initialize Variables, PREPARCheckfor Unloading

Solvefor Rolling I

Element Positions 10NEONFand Forces

Update Rolling 10UESS1ElementSpeeds

Re-solvefor Rolling

Element Positions ONEONF
and Forces

Form Race Load I

Vectors IPERFOR

CalculatePartials
of all Ball Forces
w.r.t. Curvature

Center DOF# IRDOF

!
_v

FIGURE 3.--UPDATE flow chart.
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USER'S MANUAL UPDATES

The theoretical and functional changes described in the previous section impact the user primarily

through additional input and output files. This is illustrated in the revised schematic of figure 4

(replaces fig. A2-1). The additional files are the result of the functional changes rather than the

theoretical changes. The theoretical changes alter some of the output in the existing output file. These

effects will be discussed later. The modifications and additional files required/generated by the

functional changes will be discussed first. These will be referenced to the numbering used in the

Programming Implementation subsection of the Theoretical Manual Updates section.

M_Structure

I
I

Analysis File

User Edit [

HEREBANS

ISubstructureFile I

I I
I

Auxiliary Input Files ]
(multiple displacementrun, I
outer race external force, I

preloadspring lateral stiffness) J

SubstructureFileI

_-]FE.,B,  i__ .e°uce°an°t|_ Inverted Flexibility I

[ Analysis Results I Analysis Results I

FIGURE 4.--Overall schematic of REBANS operation.
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Effects of Functional Changes

1. FEREBA will write the reduced flexibility matrices to a file whose name is based on the original

substructure file name. The name is generated by prefixing the original substructure file name

with "red." to signify that it contains the "reduced" flexibility matrices. If FEREBA finds a file

by this name it will use it instead of reading the substructure file and reducing and inverting the

stiffness matrix; therefore, if changes are made to the ANSYS model and the same file name is

used, the "red.*" file must be moved or deleted. This file also contains the axial preload spring

stiffness so that if it is changed in the analysis file the substructure file will be reread and

reduced. If the user attempts to add or change a lateral preload spring stiffness (functional

change 6), the change will not be recognized since FEREBA will read the reduced flexibility

matrices rather than the substructure stiffness matrix.

2. The multiple sets of inner ring displacements are supplied by the user in an ASCII file read from

FORTRAN unit number 51. Each record of this file should contain four comma-separated values.

These values correspond to: Y-Axis Translation, Z-Axis Translation, XZ-Plane Rotation (About

Y), XY-Plane Rotation (About Z). Multiple axial displacements are not currently provided for.

Each case will be solved sequentially until an end-of-file is reached. The file will be read if

appropriate linkage exists between it and FORTRAN unit number 51 (procedures for connecting

a file to a FORTRAN unit number are operating system-dependent). If the program is running in

force input mode, this file is ignored.

. In order to run the displacement input mode with force iteration in the axial direction only, the

user must edit the analysis file (*.dat). Beginning with an analysis file that is set up for

displacement input mode, insert a "LOADS" set immediately prior to the "DISPL" data. This set

should contain the desired axial preload in the first record and zero for the remaining four

records. The axial translation in the "DISPL" set will be ignored. For example, the records

LOADS

DISPL

1000.0000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

2.2000000E-03

0.0000000E-03

0.0000000E-07

0.0000000E-07

preload force

X-Axis (Axial) Translation

Y-Axis Translation

Z-Axis Translation

XZ-Plane Rotation (About Y)

XY-Plane Rotation (About Z)

will iterate axial translation to achieve 1,000 pounds of axial load while the Y-axis translation is
fixed at 0.0022 inch.
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4. Thecalculatedaverage"rigid body" tilt for theouterring is written to theASCII outputfile and
to anadditionalbinaryfile for plotting (seeitem5).

5. Thedisplacementsandloadsfor themultipledisplacementcasesarewritten to FORTRANunit
number62with abinary write andto unit number61with afreeformatwrite. Eachrecordis
structuredasfollows:

X, Fsumx , Yavg' Fsumy' Zavg' Fsumz' OaVgy, Msumy' _) avg z ' MSUmz'

(Tilti, i= 1, nbrg), (Fx, Fy, Fz, My, Mz)i, i= 1, nbrg.

The sum and avg subscripts refer to summing and averaging values for both bearings of a duplex

set. The designation nbrg is 2 for a duplex bearing and 1 otherwise. Figure 5 shows an example

plot from this file. The outer ring constraint forces are written to FORTRAN unit number 64 with

a binary write. Each record is structured as follows:

Yavg' Zavg' O avgy' O aVgz' Fci , i = 1, number of gaps.

"¢3
f-

0

0
U.

0
.m
*d
m

ee.
.tn

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

3-1 _ 4-1

/
/

/
/

/

i_ I I i i i I

0.0000 0.0010 0.0020 0.0030 0.0040
0.0005 0.0015 0.0025 0.0035

ShaftYAxisDisplacement(inches)

FIGURE 5.--Example force/deflection curve.
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Figure6 showsanexampleplot from this file. Thepolarplot for theORCCdeflectionsis written
to FORTRANunit number63with abinarywrite. Eachrecordis structuredasfollows:

Y*+Ayl,Z*+Azl,Y*,Z*,Y*+Ay2,Z*+ Az2 •

The values of y* and z* correspond to a circle with a radius of 2.5 times the radial gap value. The

subscripts 1 and 2 refer to bearings 1 and 2 in a duplex set (if it is duplex). The y axis deflection

of the race at ball position 1 has been subtracted from the values of Ay 1 to remove the "rigid

body" translation bias from the plot (for loading in the +y direction). This facilitates the

comparison of the deflected plot with the undeflected plot. Figure 7 shows an example plot from

this file. The dotted line represents the undeflected plot and the solid line the deflected plot. For

multiple displacement cases this plot is of marginal utility. Each successive deflected ring is

drawn over the previous ones so that the deflected shapes are usually not visible.

1-1 _6-1 >4-)4 11-1 _ 16-1

,00
_ 00 ",
t-.

-300
(#J

° ,X,-400

.=_
m

.., -500
-600

-700

-800 ' ' ' ' ' ' '
0.0000 0.0010 0.0020 0.0030

0.0005 0.0015 0.0025 0.0035

ShaftYAxisDisplacement(inches)

\

\
I

0.0040

FIGURE 6.--Gap 2 constraint forces for ball locations 1, 2, and 3.
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FIGURE 7.--Outer race curvature center deflections polar plot.

.

.

The lateral stiffness between the race and carrier at the preload spring contact face is supplied by

the user in an ASCII file read from FORTRAN unit number 53. This value should be on the first

record beginning in the first column.

The set of external forces applied to the outer race are supplied by the user in an ASCII file read

from FORTRAN unit number 52. The number of such forces must be the only value on the first

record (beginning in the first column) of this file. Each remaining record should contain two

comma-separated values. The first value is an integer number designating the gap DOF index

number corresponding to the location of force application. The second value is the force

magnitude at that location. As an example, for IBSCOR=2 with 11 balls, the records

3

1,50,0.

26,-250.

31,-250.

will apply 500 pounds in the axial direction at ball location 1 and -250 pounds in the axial

direction at each of ball locations 6 and 7. To determine the gap DOF numbering the user must

refer to the appendix (revises section 3 of the original Theoretical Manual due to the additional

radial master DOF).
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. The additional radial master DOF requires a change to the ANSYS model. The outer race

configuration descriptions of section 3.2 of the User's Manual should be modified according to

the Theoretical Manual updates provided in the appendix. The example ANSYS input file of

section 3.4 should be modified where the master DOF's are defined. Lines 240 and 241 should

be replaced with the following:

M, 1023, UX, 1029, 6, UY, UZ

MGEN, NRE, MINC, 1023, 1029, 6

M, 1024, UX, 1028, 2, UY, UZ

MGEN, NRE, MINC, 1024, 1028, 2

* Master nodes 1023 and 1029

* Define similar nodes as masters

* Master nodes 1024, 1026, and 1028

* Define similar nodes as masters.

Similar changes should be made to models of other configurations.

Effects of Theoretical Changes

The changes made in the theoretical development only affect the program output. This occurs

primarily in the definition of "error" and in the messages related to convergence failure. Due to the new

iteration approach, the error norm (defined by equation (9)) is no longer an "average" of various

displacement errors as before. There are also no longer separate errors for the inner and outer races.

Deflection errors for both races are contained in the residual vector Rn. Referring to the User's Manual,

this will change the sample printout of FEREBA status information (section 5.2, page A5-3) as shown in

figure 8. Also, the iteration approach discussed in section 5.0 is modified in the same manner as was

discussed for the Theoretical Manual--Solution Methodology (section 2.1).

The discussion of convergence problems (section 5.3) is significantly modified by the new solution

procedure. It remains true that for an iterative, nonlinear analysis such as that performed by FEREBA,

absolute convergence cannot be guaranteed. The revised procedure, however, has greatly reduced the

frequency of occurrence of nonconvergence with this program. The original approach required four

iteration loops for a solution. The revised procedure eliminates the outer ring/carrier gap iteration loop

and moves the force iteration outside the elastic deflection iteration. The possible errors associated with

each of the three iteration loops are discussed in the following:

ERROR FROM DNEQNF--The number of calls to FCN has exceeded ITMAX* (N+I).

ERROR FROM DNEQNF--The iteration has not made good progress.

These errors are from the rolling element equilibrium iteration (DNEQNF is called from subroutine

BRGFOR). The accuracy and iteration limits are initially set internally. The user-supplied accuracy and

iteration limits for the shaft/inner race force iteration loop are substituted here if they call for a more

precise solution (smaller accuracy, larger iteration limit). These values can be altered if this error occurs.

18



R E B A N S Rolling Element Bearing Analysis System - R E B A N S

FFFFFFF EEEEEEE RRRRRR EEEEEEE BBBBBB AAA/kA

FF EE RR RR EE BB BB AA AA

FFFFFF EEEEEE RRRRRR EEEEEE BBBBBB AAAAAAA

FF EE RR RR EE BB BB AA AA

FF EEEEEE RR RR EEEEEE BBBBBB AA AA

Flexibility Enhanced Rolling Element Bearing Analysis

Final Release Version 2.00 - Dated 01 August 1996

Title Of Analysis Being Run:

Test Case with flexible outer ring, IBSCOR=2, 1 mil radial deadband

Name of Input Analysis File: /usr/people/ryansg/rebans/testl.dat

Name of Output Results File: testls.out

Forming Compliance Matrices for Outer Ring

reading previously reduced and inverted outer race file:

red.bor2ms3.asc

Compliance Matrices Created for Outer Ring, Elapsed Time = 0.41 secs

Now Iterating to Determine Quasi-Static Equilibrium Solution

Elastic deformation iteration 1 complete, Error = 6.5675E+03%

Elastic deformation

Elastic deformation

Elastic deformation

Elastic deformation

Elastic deformation

Elastic deformation

Elastic deformation

Elastic deformation

iteration 2 complete, Error = 2.0154E+07%

iteration 3 complete, Error = 4.7745E+03%

iteration 4 complete, Error = 4.6094E+05%

iteration 5 complete, Error = 8.1675E+01%

iteration 6 complete, Error = 1.0520E+01%

iteration 7 complete, Error = 3.0943E-02%

iteration 8 complete, Error = 9.6991E-05%

iteration 9 complete, Error = 3.0534E-07%

Quasi-Static Iteration Finished - Elapsed Execution Time = 8.48 secs

FEREBA Execution Completed, Total CP Time = 8.96 secs

Printed Output Written to File: testls.out

FIGURE 8.--Example of FEREBA status information output.
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Activating print optionlevel 3 will displaythefinal iterationvalues.Option level4 will displayeach
valueduringtheiterationprocess.Theusercanmodify theactiontakenwhentheseerrorsoccurby
enabling(uncommenting)thecall to theroutineERSET.This call is madein themainprogram
FEREBA.Thiswill allow theuserto testthevalueof theIMSL functionIERCDaftercalling DNEQNF
andspecifyactionaccordingly.Fortunately,theoccurrenceof theseerrorsis theexceptionratherthan
therule.

***** WARNING--Elastic deformationsunconvergedafter ??loops--WARNING *****
Error is = XXXXXXXX%

Requestedmaximumiterationerroris = YYYYYYYY%
***** WARNING--Solution maybeacceptable--examinecarefully--WARNING *****

Thiswarningoccursin theelasticdeflectioniterationloop.If thesolutionis converging,thenumber
of iterationsallowedmaybe increased.If theerroris smallenough,therequiredaccuracymaybe
increased.Activating print option level 2 will display information about gap constraint forces to aid in

debugging, if necessary.

***** WARNING--Force iteration unconverged after ?? loops--WARNING *****
Error is = XXXXXXXX%

Requested maximum iteration error is = YYYYYYYY%

***** WARNING--Solution may be acceptable--examine carefully--WARNING *****

This warning occurs in the force iteration loop. If the solution is converging, the number of iterations

allowed may be increased. If the error is small enough, the required accuracy may be increased.

Activating print option level 1 will display information about assumed inner race displacements and

calculated inner race forces to aid in debugging, if necessary.

Additional User's Manual Changes

The boundary conditions for outer race configuration 4 (illustrated on page 3-5) may not be

representative of a user's configuration. It is not necessary to constrain the duplex bearing in the axial

direction as shown. It must be restrained radially similarly to the primary bearing. While it is not

necessarily erroneous to constrain the duplex bearing in the manner shown, it is not required as the text

implies. The user should determine which constraints are appropriate for the configuration being

analyzed.
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GENERAL COMMENTS ON ASSUMPTIONS AND INHERENT ERRORS

The assumptions required to formulate a mathematical representation of a physical device inevitably

introduce errors. There are three particular errors of this nature in the REBANS analysis. Two of these

are caused by the addition of race/support flexibility and the way it is modeled. The other error is not

unique to this enhancement and probably exists in other bearing analysis programs.

The error that is not unique to REBANS is related to the summation of roiling element forces. When

rolling element forces are summed on the inner race and the outer race, the two sums are not equal. This

result is not physically possible. The difference is due to the neglect of rolling element azimuth angle

deviations and tangential acceleration forces. In the classical quasi-static bearing analysis, the rolling

element speeds are calculated based on the individual element kinematics (contact angles, etc.). In order

for ball #1 to have a different orbital speed than ball #2, the ball must accelerate or decelerate in the

tangential direction. The inertia force from this acceleration must be reacted on the raceways. In

addition, the ball will make an excursion from the evenly spaced azimuth position usually assumed in

the analysis. For a classical fixed outer race analysis, incorporating the acceleration forces and the

azimuth angle deviations negates the difference in the sum of forces on the inner and outer races. This

cannot be easily corrected in the REBANS analysis. The ball forces can only be applied at the fixed

azimuth positions defined by the finite element model node locations. The present form of the program

also reduces out tangential DOF's from the race model so that the acceleration forces cannot be applied.

The magnitude of this error is on the order of 1-2 percent.

The two REBANS unique errors are related to the finite element model grid. The first of these is

related to ball bearing contact angles. The ball/race contact loads must be applied to a fixed node

location on the race. This point is typically placed at either the tinloaded contact angle or the estimated

loaded contact angle. The actual contact angles vary from ball to ball and will not, in general, equal the

assumed value used to define the finite element model grid. While the loads are applied at the correct

angle, their line of application is displaced slightly to match the node location. The magnitude of this

error is difficult to quantify; however, an analysis of a rigid ring (including a tilt DOF) with the same

error simulated resulted in 1-2 percent error.

The second REBANS unique error is related to race/support contact. The race contacts the support

with circumferentially and axially distributed contact loads. These distributed loads are represented by

discrete forces applied to the structures. In the circumferential direction, there are as many locations as

rolling elements. In the axial direction, there are three locations. The placement of the axial locations

will have a direct effect on the tipping moment which can be reacted at the race corner. Chamfering and

local flexibilities will alter where the "effective" reaction force should be placed to most accurately

represent the actual mechanics of this interaction. The axial spacing error has been greatly reduced by

incorporating the additional radial master DOF for the outer race. The error due to circumferential

spacing requires further analysis to determine the degree of spatial resolution required to adequately

represent the race/support contact mechanics.
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APPENDIX

. Single ball bearing, flexible outer ring with deadband, carrier assumed rigid (IBSCOR=2).

This model is nonlinear due to deadband contact, which is dependent on ball loads applied

to the outer race. There are 5 gaps between the outer ring and rigid housing, and at each

azimuthal position, 7 master nodes are required. After reduction in FEREBA, 9 DOF's remain at

each ball location (4 axial, 5 radial).

2_ 3_ 4z_ F Preload Spring

1,,

Active DOF's

ANSYS 21 "n (X, Y, Z)

FEREBA 9"n (X, R)

Active Nodes (DOF's)

X: 1,2,3,7(1,4,7,19)

R: 1,2,4,5,6(2,5,11,14,17)

Reduced DOF's

3*, 6, 8, 9, 10, 12, 13, 15, 16, 18, 20, 21

* DOF 3 is deleted

. Single ball bearing with flexible outer ring and carrier with deadband (IBSCOR=3). This

model is nonlinear due to deadband contact, which is dependent on ball loads applied to the

outer race, and also due to the preload spring (nodes 7-12), which can bottom. There are

5 gaps between the outer ring and cartier, and at each azimuthal position, 12 master nodes are

required (7 on the outer ring, 5 on the carrier). After reduction in FEREBA, 14 DOF's remain at

each ball location (6 axial, 8 radial).

Active DOF's

ANSYS 36"n (X, Y, Z)

FEREBA 14"n (X, R)

9 10 11

2_ 3_ 4_ I"
_-- Preload Spring

x

Active Nodes (DOF's)

X: 1,2,3,7,8,12

(1, 4, 7, 19, 22, 34)

R: 1,2,4,5,6,9,10,11

(2, 5, 11, 14, 17, 26, 29, 32)

Reduced DOF's

3*, 6, 8, 9, 10, 12, 13, 15, 16,

18, 20, 21, 23, 24, 25, 27, 28,

30, 31, 33, 35, 36

* DOF 3 is deleted
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. Duplex ball bearing set with flexible outer rings with deadband and with carrier assumed rigid

(IBSCOR=5). The analysis is restricted to having n equal in both bearings. This model is nonlin-

ear due to deadband contact and the possibility that the preload spring (7-10) could bottom.

There are 9 gaps between the outer ring and rigid housing, and at each azimuthal plane, 14

master nodes are required (7 on each bearing). After reduction in FEREBA, 18 DOF's remain at

each ball location (8 axial, 10 radial).

F Preload Spring

£4 ; Bq "11 1"2 135

x

Active DOF's

ANSYS 42"n (X, Y, Z)

FEREBA 18"n (X, R)

Active Nodes (DOF's)

X: 1, 2, 3, 7, 8, 9,10,14 ..

(1, 4, 7, 19, 22, 25, 28, 40)

R: 1,2,4,5,6,8,9,11,12,13

(2, 5, 11, 14, 17, 23, 26, 32, 35, 38)

Reduced DOF's

3*, 6, 8, 9, 10, 12, 13, 15, 16, 18, 20, 21,

24", 27, 29, 30, 31, 33, 34, 36, 37, 39, 41, 42

* DOF's 3 and 24 are deleted

.

The relative positions of the "primary" and "duplex" bearings are the same as

configuration 4.

Duplex ball bearing set with flexible outer rings and carrier with deadband (IBSCOR=6).

The analysis is restricted to having n equal in both bearings. This model is nonlinear due to

deadband contact and the possibility that the preload spring (7-10) could bottom. There are

9 gaps between the outer ring and carrier, and at each azimuthal position, 22 master nodes are

required (7 on each bearing and 8 on the carrier). After reduction in FEREBA, 26 DOF's remain

at each ball location (10 axial, 16 radial).

z_ 16 17 18 z_/];Prel°adS21ring 21 z_

I ; 4101 ;2 I

i --T
x

Active DOF's

ANSYS 66"n (X, Y, Z)

FEREBA 26"n (X, R)

Active Nodes (DOF's)

X: 1,2,3,7,8,9,10,14,15,22(1,4,7,19,

22, 25, 28, 40, 43, 64)

R: 1,2,4,5,6,8,9,11,12,13,16,17,18,

19, 20, 21 (2, 5, 11, 14, 17, 23, 26,

32, 35, 38, 47, 50, 53, 56, 59, 62)
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Reduced DOF's

3",6,8,9,10,12,13,15,16,18,20,21,

24",27,29,30,31,33,34,36,37,39,41,

42,44,45,46,48,49,51,52,54,55,57,58,

60,61,63,65,66

* DOF's 3 and 24 are deleted

o

The relative positions of the "primary" and "duplex" bearings are the same as

configuration 4.

Cylindrical roller bearing with flexible outer ring with deadband and with carrier assumed rigid

(IBSCOR=8). This model is nonlinear due to deadband contact. There are 3 gaps between the

outer ring and rigid housing, and at each azimuthal position, 5 master nodes are required. After

reduction in FEREBA, 5 radial DOF's remain at each roller location.

.

1_ 2 __ 3_

1

I

Roller
i

Active DOF's

ANSYS 15"n (X, Y, Z)

FEREBA 5"n (R)

R _ Active Nodes (DOF's)

L_. X: None

x R: 1, 2, 3, 4, 5 (2, 5, 8, 11, 14)

•Reduced DOF's

1,3,4,6,7,9, 10, 12, 13, 15

Cylindrical roller bearing with flexible outer ring and carrier with deadband (IBSCOR = 9). This

model is nonlinear due to deadband contact. There are 3 gaps between the outer ring and carrier,

and at each azimuthal position, 8 master nodes are required (5 on the bearing and 3 on the car-

rier). After reduction in FEREBA, 8 radial DOF's remain at each roller location.

Active DOF's

_ RANSYS 24"n (X, Y, Z)

I I _ _ _' 2 _ LJ/_ FEREBA 8"n(R)
i - Active Nodes (DOF's)
3 4 X: None

1 2 Rq R: 1,2,3,4,5,6,7,8

I ° ° i _ (2, 5, 8, 11, 14, 17, 20, 23)

I R0110r I x

Reduced DOF's

1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21,

22, 24
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